United Water Westchester

Design & Management of District Metered Areas

2015 NYSAWWA Conference

Nick Curcio
System Overview

- 7.0 MGD Average Day Demand
- 16.8 MGD Peak Hourly Demand
- 12,000 # Service Connections
- 168.0 Miles of Pipe
- 4.5 MG Pumped Storage System

- 100% Purchased Water System
 - 7 Total Interconnections
 - Fluctuating Incoming Supply Gradient

- $2,270/MG Variable Production Cost Associated with Real Loss
Introduction

- Operational Challenges
 - High Degree of Non-Surfacing Leaks due to System Topography
 - Availability of System Operating Data - Inefficient Deployment of Resources
 - Low Resolution Production/Consumption Data – Poor Water Loss Audits
 - High Levels of Water Loss (Leakage)

- Importance of Efficient System Operation
 - Tangible Benefits: Direct and Immediate Cost Savings
 - Production Costs – Energy, Chemicals, Etc.
 - Purchased Water Costs
 - Intangible Benefits: External Perception
 - Regulatory and Public Perception
 - Environmental Impact, Conservation
Non-Revenue Water Program Overview

- **Initial Evaluation – Components of Water Loss**
 - Nature of Water Loss Drives Remediation Actions
 - Characterize Nature of Water Loss
 - Efficient Deployment of Resources

- **Higher-Resolution Data Across Smaller Regions**
 - DMA System to Create Manageable Sized Zones
 - Anomalies Become More Evident
 - Better Align Production and Consumption Information

- **Short-Term Goals**
 - Leak Detection Efficiency
 - Clean-up of Existing Baseline Real Loss (Leakage)

- **Long-Term Goals**
 - High-Resolution Water Audits & Apparent Loss (Consumption) Reduction
 - Sustainability
DMA System Design

- **DMA System Basics**
 - Isolated Production Zone
 - Can be Viewed as Independent System
 - < 3,000 Service Connections – Easier to Achieve for Smaller Systems

- **Boundary Selection**
 - Existing Natural Boundaries (railroads, highways, waterways) = Minimal Crossings
 - Existing Pressure Zone Boundaries (already isolated)

- **Meter Sizing & Placement**
 - Weighted Average Accuracy (per DMA Zone) of 1% for Average Demand Flows, 2% Accuracy for Minimum Demand Flows
 - **Downsizing of Meters is Perfectly Acceptable from a Hydraulic Standpoint**
 - Hydraulic Modeling Evaluation to Determine Flow Ranges at Each Meter Site Under Various Operating Conditions
 - Additional Pressure Transducer at *ALL* Metering Locations
DMA System Design

Sizing chart

<table>
<thead>
<tr>
<th>DMA-ID</th>
<th>Meter-ID</th>
<th>Model-ID</th>
<th>Location</th>
<th>Pipe Diameter (in)</th>
<th>In/Out</th>
<th>Average Flow (Meter)</th>
<th>Min Flow (Meter)</th>
<th>Max Flow (Meter)</th>
<th>Meter Dia. (in)</th>
<th>Headloss (Max Flow ft)</th>
<th>Average Accuracy (Meter)</th>
<th>Average Accuracy (DMA)</th>
<th>Min Accuracy (Meter)</th>
<th>Min Accuracy (DMA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NY HIGH 1</td>
<td></td>
<td></td>
<td>Anderson Hill Rd (WW) Supply</td>
<td>15</td>
<td>IN</td>
<td>381</td>
<td>158</td>
<td>1552</td>
<td>10</td>
<td>0.098</td>
<td>0.81</td>
<td>1.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NY HIGH 1</td>
<td></td>
<td></td>
<td>Anderson Hill Rd CT Eng, Supply</td>
<td>14</td>
<td>IN</td>
<td>231</td>
<td>61</td>
<td>1552</td>
<td>8</td>
<td>0.248</td>
<td>0.83</td>
<td>2.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NY HIGH 1</td>
<td></td>
<td></td>
<td>Blind Brook Country Club</td>
<td>12</td>
<td>OUT</td>
<td>135</td>
<td>77</td>
<td>231</td>
<td>8</td>
<td>0.007</td>
<td>1.17</td>
<td>1.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NY HIGH 2</td>
<td></td>
<td></td>
<td>Blind Brook Country Club</td>
<td>12</td>
<td>IN</td>
<td>135</td>
<td>77</td>
<td>231</td>
<td>8</td>
<td>0.007</td>
<td>1.17</td>
<td>1.69</td>
<td></td>
<td>1.74</td>
</tr>
<tr>
<td>NY MAIN 1</td>
<td></td>
<td></td>
<td>Comly Ave (CT) Supply</td>
<td>24</td>
<td>IN</td>
<td>375</td>
<td>133</td>
<td>7064</td>
<td>16</td>
<td>0.234</td>
<td>0.51</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NY MAIN 1</td>
<td></td>
<td></td>
<td>Hawley Ave and King St</td>
<td>8</td>
<td>OUT</td>
<td>137</td>
<td>51</td>
<td>285</td>
<td>6</td>
<td>0.037</td>
<td>0.81</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NY MAIN 1</td>
<td></td>
<td></td>
<td>N Regent St and King St</td>
<td>24</td>
<td>IN</td>
<td>40</td>
<td>21</td>
<td>166</td>
<td>6</td>
<td>0.005</td>
<td>0.72</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NY MAIN 1</td>
<td></td>
<td></td>
<td>Post Rd (CT) Supply</td>
<td>16</td>
<td>IN</td>
<td>712</td>
<td>162</td>
<td>1814</td>
<td>10</td>
<td>0.121</td>
<td>1.16</td>
<td>1.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NY MAIN 1</td>
<td></td>
<td></td>
<td>Adee St and N Main St</td>
<td>12</td>
<td>OUT</td>
<td>158</td>
<td>17</td>
<td>524</td>
<td>6</td>
<td>0.113</td>
<td>0.55</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NY MAIN 1</td>
<td></td>
<td></td>
<td>Irving Ave and Leicester St</td>
<td>12</td>
<td>OUT</td>
<td>90</td>
<td>48</td>
<td>164</td>
<td>6</td>
<td>0.013</td>
<td>0.84</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NY MAIN 1</td>
<td></td>
<td></td>
<td>Prospect St and Summit Ave</td>
<td>12</td>
<td>IN</td>
<td>135</td>
<td>51</td>
<td>285</td>
<td>6</td>
<td>0.037</td>
<td>0.81</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NY MAIN 2</td>
<td></td>
<td></td>
<td>Westchester Ave (WW) Supply</td>
<td>8</td>
<td>IN</td>
<td>500</td>
<td>89</td>
<td>2000</td>
<td>8</td>
<td>0.397</td>
<td>0.6</td>
<td>1.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NY MAIN 2</td>
<td></td>
<td></td>
<td>Hawley Ave and King St</td>
<td>8</td>
<td>IN</td>
<td>500</td>
<td>89</td>
<td>2000</td>
<td>6</td>
<td>0.397</td>
<td>0.6</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NY MAIN 2</td>
<td></td>
<td></td>
<td>Westchester Ave and Ridge St</td>
<td>24</td>
<td>IN</td>
<td>2013</td>
<td>769</td>
<td>4142</td>
<td>12</td>
<td>0.283</td>
<td>0.51</td>
<td>0.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NY MAIN 2</td>
<td></td>
<td></td>
<td>Westchester Ave and Ridge St</td>
<td>24</td>
<td>IN</td>
<td>2013</td>
<td>769</td>
<td>4142</td>
<td>12</td>
<td>0.283</td>
<td>0.51</td>
<td>0.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NY MAIN 2</td>
<td></td>
<td></td>
<td>Westchester Ave and Ridge St</td>
<td>16</td>
<td>OUT</td>
<td>69</td>
<td>24</td>
<td>403</td>
<td>6</td>
<td>0.069</td>
<td>1.01</td>
<td>2.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NY MAIN 2</td>
<td></td>
<td></td>
<td>Westchester Ave and Ridge St</td>
<td>20</td>
<td>OUT</td>
<td>1390</td>
<td>564</td>
<td>2747</td>
<td>12</td>
<td>0.132</td>
<td>0.36</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NY MAIN 2</td>
<td></td>
<td></td>
<td>Westchester Ave and Ridge St</td>
<td>16</td>
<td>OUT</td>
<td>642</td>
<td>234</td>
<td>1562</td>
<td>10</td>
<td>0.099</td>
<td>0.44</td>
<td>0.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NY MAIN 3</td>
<td></td>
<td></td>
<td>Cedar St PRV</td>
<td>16</td>
<td>OUT</td>
<td>545</td>
<td>141</td>
<td>729</td>
<td>12</td>
<td>0.069</td>
<td>0.49</td>
<td>0.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NY MAIN 3</td>
<td></td>
<td></td>
<td>Cedar St PRV</td>
<td>16</td>
<td>IN</td>
<td>345</td>
<td>141</td>
<td>729</td>
<td>10</td>
<td>0.063</td>
<td>0.49</td>
<td>0.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NY MAIN 4</td>
<td></td>
<td></td>
<td>Osborn Rd (WW) Supply</td>
<td>12</td>
<td>IN</td>
<td>768</td>
<td>300</td>
<td>1968</td>
<td>10</td>
<td>0.152</td>
<td>0.4</td>
<td>0.40</td>
<td></td>
<td>0.65</td>
</tr>
<tr>
<td>NY MAIN 4</td>
<td></td>
<td></td>
<td>Oakland Beach Ave PRV</td>
<td>8</td>
<td>OUT</td>
<td>584</td>
<td>341</td>
<td>1049</td>
<td>8</td>
<td>0.120</td>
<td>0.37</td>
<td>0.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NY LOW 1</td>
<td></td>
<td></td>
<td>Adee St and N Main St</td>
<td>16</td>
<td>IN</td>
<td>712</td>
<td>162</td>
<td>1814</td>
<td>10</td>
<td>0.131</td>
<td>0.42</td>
<td>1.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NY LOW 1</td>
<td></td>
<td></td>
<td>Cedar St PRV</td>
<td>16</td>
<td>IN</td>
<td>642</td>
<td>234</td>
<td>1562</td>
<td>10</td>
<td>0.099</td>
<td>0.44</td>
<td>0.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NY LOW 2</td>
<td></td>
<td></td>
<td>Boston Post Rd</td>
<td>10</td>
<td>OUT</td>
<td>111</td>
<td>21</td>
<td>521</td>
<td>6</td>
<td>0.045</td>
<td>0.9</td>
<td>3.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NY LOW 2</td>
<td></td>
<td></td>
<td>Midland Ave</td>
<td>12</td>
<td>OUT</td>
<td>139</td>
<td>25</td>
<td>563</td>
<td>6</td>
<td>0.128</td>
<td>0.6</td>
<td>2.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NY LOW 2</td>
<td></td>
<td></td>
<td>Forest Ave</td>
<td>6</td>
<td>OUT</td>
<td>59</td>
<td>3</td>
<td>209</td>
<td>6</td>
<td>0.021</td>
<td>1.29</td>
<td>2.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NY LOW 2</td>
<td></td>
<td></td>
<td>Boston Post Rd</td>
<td>10</td>
<td>IN</td>
<td>111</td>
<td>21</td>
<td>521</td>
<td>6</td>
<td>0.045</td>
<td>0.7</td>
<td>2.87</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NY LOW 2</td>
<td></td>
<td></td>
<td>Midland Ave</td>
<td>12</td>
<td>IN</td>
<td>139</td>
<td>25</td>
<td>563</td>
<td>6</td>
<td>0.128</td>
<td>0.6</td>
<td>2.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NY LOW 2</td>
<td></td>
<td></td>
<td>Forest Ave</td>
<td>6</td>
<td>IN</td>
<td>59</td>
<td>3</td>
<td>209</td>
<td>6</td>
<td>0.021</td>
<td>1.29</td>
<td>2.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NY LOW 2</td>
<td></td>
<td></td>
<td>Oakland Beach Ave PRV</td>
<td>8</td>
<td>IN</td>
<td>584</td>
<td>341</td>
<td>1049</td>
<td>8</td>
<td>0.120</td>
<td>0.37</td>
<td>0.49</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DMA Meter Site Design & Installation

- **Direct Bury Open-Tube Meters**
 - Siemens MAG 8000 (21 Meters for 8 Zones)
 - Avoid Expense of Meter Pits (& Flooding)

- **Site Installation**
 - Planned Minimized Shut Downs
 - Field Improvised Specific meter Locations
 - Installation Orientation is **VERY** Important

- **Roadside Cabinet for Electronics**
 - Custom Designed Quartzite Box Enclosure
 - All Components are Battery Operated
 - Plan for Future Maintenance Access
DMA Zone Isolation

- **Implement Zone Isolation (Division Valves)**
 - Turn Count & Sounding to Verify Valve Seating
 - Evaluate & Remedy Hydraulic & Water Quality Issues Associated with Closed Valves

- **Isolation Testing to Verify Zone Isolation**
 - Good Opportunity to Verify Existing Pressure Division Valves as Well

- **Develop Proper Documentation & Policies to Ensure Zone Integrity**
DMA Data Collection & Management

- **Equipment & Data Flow**
 - Siemens MAG 8000
 - Siemens Meter Head
 - Pressure Transducer
 - Telog RU-32
 - Telog Enterprise Server
 - eOps Dashboard

- **Data Resolution**
 - Minute Level Data Capture
 - 24 Hour Transmit to SCADA

- **Mass-Balance Calculation**
 - Establishes Draft for Each DMA Zone
 - Meters are Bi-Directional with (-) sign
DMA Data Processing & Evaluation

- **Standard Leak Life-Cycle**
 - All Leaks Are Non-Surfacing for Some Amount of Time
 - Storm Drain & Wetlands
 - Rock & Soil Conditions
 - Frozen Ground Conditions

Very Little Opportunity to Further Reduce Find-to-Fix Time
DMA Data Processing & Evaluation

- **Real-Loss (leakage) Targeting**
 - DMA Specific Production/Draft Reports Used to Identify Zones Which Demonstrate a High Degree of Baseline Flow
 - Monitoring Overnight Flows to Identify Patterns Which Deviate from Normal Diurnal Fluctuations
 - Identifying and Localizing Leaks Which Have Occurred but not yet Surfaced (Event-to-Find Time)
DMA Data Processing & Evaluation

Drill-Down Approach for Leak Localization
1. Draft Indicator at Minimum Flow Period (over-night)
2. Modeling Analysis of Individual DMA Meters Serving Affected Zone
3. Generate ‘Heat-Map’ of Suspect Region
4. Localize, Correlate, & Repair

Stubborn Leaks Require Additional Data
- Pressure Logger Data Collection
- Isolation Testing
DMA Data Processing & Evaluation

- 150 gpm Leak (216k gal/day) – 6” Private Fire Service Line
 - Storm Drain Prevented Leak from Surfacing
 - Potential for Leak to Run for Long Durations
 - Winter Weather & Frozen Ground Conditions are Contributing Factors
DMA Data Processing & Evaluation

- Data Systems Integration
- Monitor System Operation & Performance
- Event Management

GIS & Mapping Integration

Production Monitoring & Trend Analysis

Event Detection & Efficiency Alarms
Preliminary Results & Findings

- 2.6% NRW Reduction – 2014 Partial Year
- 336 MG Total Production Reduction for UW Westchester Systems
- Better Monitoring of Service Parameters – Interconnections
- Better Optimization of System Operation

- Sector & Production Data Management Process led to Improvements in Other Non-DMA Systems
 - Leverage Existing Pressure Zone Metering
 - Production Meter Calibration & Maintenance for Non-Source Meters
Additional Functionality & Future Goals

- High-Resolution Water Audits (Monthly → Daily Basis)
 - Better Alignment of Production & Consumption Data
 - Assign Customer Meters to DMA Zones – Consumption Side
 - Characterize Nature of Water Loss – Real vs Apparent

<table>
<thead>
<tr>
<th>DMA ZONE</th>
<th># BILLING METERS</th>
<th>2014 CONSUMPTION (MG)</th>
<th>% SYSTEM CONSUMPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH-1</td>
<td>427</td>
<td>92.78</td>
<td>4.66%</td>
</tr>
<tr>
<td>HIGH-2</td>
<td>2,149</td>
<td>212.81</td>
<td>10.68%</td>
</tr>
<tr>
<td>MAIN-1</td>
<td>1,943</td>
<td>326.19</td>
<td>16.37%</td>
</tr>
<tr>
<td>MAIN-2</td>
<td>1,603</td>
<td>198.70</td>
<td>9.97%</td>
</tr>
<tr>
<td>MAIN-3</td>
<td>1,322</td>
<td>255.79</td>
<td>12.84%</td>
</tr>
<tr>
<td>MAIN-4</td>
<td>1,116</td>
<td>211.53</td>
<td>10.62%</td>
</tr>
<tr>
<td>LOW-1</td>
<td>1,466</td>
<td>362.89</td>
<td>18.21%</td>
</tr>
<tr>
<td>LOW-2</td>
<td>1,997</td>
<td>331.69</td>
<td>16.65%</td>
</tr>
<tr>
<td>TOTAL:</td>
<td>12,023</td>
<td>1,992.37</td>
<td>100%</td>
</tr>
</tbody>
</table>
Additional Functionality & Future Goals

- **Sustainability**
 - Achieve & Maintain Economic Level of Water Loss
 - Continuous Real-Time Monitoring and Optimization of System Efficiency
 - Monitor & Report System Performance at Various Levels of Staff

Example Water Loss Profile
Thank You

Questions?